Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effects of Crystal Phase Mixing on the Electrical Properties of InAs Nanowires

Identifieur interne : 003103 ( Main/Repository ); précédent : 003102; suivant : 003104

Effects of Crystal Phase Mixing on the Electrical Properties of InAs Nanowires

Auteurs : RBID : Pascal:11-0319960

Descripteurs français

English descriptors

Abstract

We report a systematic study of the relationship between crystal quality and electrical properties of InAs nanowires grown by MOVPE and MBE, with crystal structure varying from wurtzite to zinc blende. We find that mixtures of these phases can exhibit up to 2 orders of magnitude higher resistivity than single-phase nanowires, with a temperature-activated transport mechanism. However, it is also found that defects in the form of stacking faults and twin planes do not significantly affect the resistivity. These findings are important for nanowire-based devices, where uncontrolled formation of particular polytype mixtures may lead to unacceptable device variability.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0319960

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Effects of Crystal Phase Mixing on the Electrical Properties of InAs Nanowires</title>
<author>
<name sortKey="Thelander, Claes" uniqKey="Thelander C">Claes Thelander</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Solid State Physics, Lund University, Box 118</s1>
<s2>221 00 Lund</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>221 00 Lund</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Caroff, Philippe" uniqKey="Caroff P">Philippe Caroff</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Institut d'Electronique, de Microélectronique et de Nanotechnologie, UMR CNRS 8520, Avenue Poincaré, B.P. 60069</s1>
<s2>59652 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Nord-Pas-de-Calais</region>
<settlement type="city">Villeneuve d'Ascq</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Plissard, Sebastien" uniqKey="Plissard S">Sébastien Plissard</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Institut d'Electronique, de Microélectronique et de Nanotechnologie, UMR CNRS 8520, Avenue Poincaré, B.P. 60069</s1>
<s2>59652 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Nord-Pas-de-Calais</region>
<settlement type="city">Villeneuve d'Ascq</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Applied Physics, Photonics and Semiconductor Nanophysics, Eindhoven University of Technology, P.O. Box 513</s1>
<s2>5600 MB Eindhoven</s2>
<s3>NLD</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>5600 MB Eindhoven</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dey, Anil W" uniqKey="Dey A">Anil W. Dey</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Department of Electrical- and Information Technology, Lund University, Box 118</s1>
<s2>221 00, Lund</s2>
<s3>SWE</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>221 00, Lund</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dick, Kimberly A" uniqKey="Dick K">Kimberly A. Dick</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Solid State Physics, Lund University, Box 118</s1>
<s2>221 00 Lund</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>221 00 Lund</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Polymer & Materials Chemistry, Lund University, Box 124</s1>
<s2>221 00 Lund</s2>
<s3>SWE</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>221 00 Lund</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0319960</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0319960 INIST</idno>
<idno type="RBID">Pascal:11-0319960</idno>
<idno type="wicri:Area/Main/Corpus">002E56</idno>
<idno type="wicri:Area/Main/Repository">003103</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1530-6984</idno>
<title level="j" type="abbreviated">Nano lett. : (Print)</title>
<title level="j" type="main">Nano letters : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Allotropy</term>
<term>Crystal defects</term>
<term>Crystal perfection</term>
<term>Crystal structure</term>
<term>Electrical conductivity</term>
<term>Electrical properties</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium arsenides</term>
<term>MOVPE method</term>
<term>Molecular beam epitaxy</term>
<term>Nanomaterial synthesis</term>
<term>Nanostructured materials</term>
<term>Nanowire device</term>
<term>Nanowires</term>
<term>Stacking faults</term>
<term>VPE</term>
<term>Zinc</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Propriété électrique</term>
<term>Arséniure d'indium</term>
<term>Semiconducteur III-V</term>
<term>Composé III-V</term>
<term>Nanofil</term>
<term>Nanomatériau</term>
<term>Perfection cristalline</term>
<term>Synthèse nanomatériau</term>
<term>Méthode MOVPE</term>
<term>Epitaxie phase vapeur</term>
<term>Epitaxie jet moléculaire</term>
<term>Structure cristalline</term>
<term>Zinc</term>
<term>Conductivité électrique</term>
<term>Défaut empilement</term>
<term>Défaut cristallin</term>
<term>Dispositif nanofil</term>
<term>Allotropie</term>
<term>InAs</term>
<term>Zn</term>
<term>8107V</term>
<term>8107B</term>
<term>8116</term>
<term>6146</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Zinc</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We report a systematic study of the relationship between crystal quality and electrical properties of InAs nanowires grown by MOVPE and MBE, with crystal structure varying from wurtzite to zinc blende. We find that mixtures of these phases can exhibit up to 2 orders of magnitude higher resistivity than single-phase nanowires, with a temperature-activated transport mechanism. However, it is also found that defects in the form of stacking faults and twin planes do not significantly affect the resistivity. These findings are important for nanowire-based devices, where uncontrolled formation of particular polytype mixtures may lead to unacceptable device variability.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1530-6984</s0>
</fA01>
<fA03 i2="1">
<s0>Nano lett. : (Print)</s0>
</fA03>
<fA05>
<s2>11</s2>
</fA05>
<fA06>
<s2>6</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Effects of Crystal Phase Mixing on the Electrical Properties of InAs Nanowires</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>THELANDER (Claes)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CAROFF (Philippe)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>PLISSARD (Sébastien)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>DEY (Anil W.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>DICK (Kimberly A.)</s1>
</fA11>
<fA14 i1="01">
<s1>Solid State Physics, Lund University, Box 118</s1>
<s2>221 00 Lund</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institut d'Electronique, de Microélectronique et de Nanotechnologie, UMR CNRS 8520, Avenue Poincaré, B.P. 60069</s1>
<s2>59652 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Applied Physics, Photonics and Semiconductor Nanophysics, Eindhoven University of Technology, P.O. Box 513</s1>
<s2>5600 MB Eindhoven</s2>
<s3>NLD</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Electrical- and Information Technology, Lund University, Box 118</s1>
<s2>221 00, Lund</s2>
<s3>SWE</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Polymer & Materials Chemistry, Lund University, Box 124</s1>
<s2>221 00 Lund</s2>
<s3>SWE</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>2424-2429</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27369</s2>
<s5>354000190349260400</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>26 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0319960</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nano letters : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We report a systematic study of the relationship between crystal quality and electrical properties of InAs nanowires grown by MOVPE and MBE, with crystal structure varying from wurtzite to zinc blende. We find that mixtures of these phases can exhibit up to 2 orders of magnitude higher resistivity than single-phase nanowires, with a temperature-activated transport mechanism. However, it is also found that defects in the form of stacking faults and twin planes do not significantly affect the resistivity. These findings are important for nanowire-based devices, where uncontrolled formation of particular polytype mixtures may lead to unacceptable device variability.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A07V</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A16</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B60A46</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Propriété électrique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Electrical properties</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Nanofil</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Nanowires</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Perfection cristalline</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Crystal perfection</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Perfección cristalina</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Synthèse nanomatériau</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Nanomaterial synthesis</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Síntesis nanomaterial</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Méthode MOVPE</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>MOVPE method</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Método MOVPE</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Epitaxie phase vapeur</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>VPE</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Epitaxie jet moléculaire</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Molecular beam epitaxy</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Structure cristalline</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Crystal structure</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Zinc</s0>
<s2>NC</s2>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Zinc</s0>
<s2>NC</s2>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Conductivité électrique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Electrical conductivity</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Défaut empilement</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Stacking faults</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Défaut cristallin</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Crystal defects</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Dispositif nanofil</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Nanowire device</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Dispositivo nanohilo</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Allotropie</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Allotropy</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>InAs</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Zn</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>8107V</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>8116</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>6146</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>220</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003103 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 003103 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:11-0319960
   |texte=   Effects of Crystal Phase Mixing on the Electrical Properties of InAs Nanowires
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024